3. Given the following information, calculate the rate of return for this portfolio for January, February, March, and the first quarter of 2000, using a true time-weighted rate of return:

Date	Market Value (€)	Cash Flow (€)	Market Value Post Cash Flow (€)
12/31/99	500,000		
1/31/00	509,000		
2/19/00	513,000	+50,000	563,000
2/28/00	575,000		
3/12/00	585,000	-20,000	565,000
3/31/00	570,000		

Solution:

January

$$R = \frac{\left(509,000 - 500,000\right)}{500,000} = 1.80\%$$

February

$$1/31/00 - 2/19/00 \quad R = \frac{(513,000 - 509,000)}{509,000} = 0.79\%$$

$$2/19/00 - 2/28/00 R = \frac{(575,000 - 563,000)}{563,000} = 2.13\%$$

$$1/31/00-2/28/00 \quad R_{\scriptscriptstyle FEB} = \left(\left(1 + 0.008 \right) \times \left(1 + 0.021 \right) \right) - 1 = 2.92\%$$

<u>March</u>

$$2/28/00 - 3/12/00$$
 $R = \frac{(585,000 - 575,000)}{575,000} = 1.74\%$

$$3/12/00 - 3/31/00 \quad R = \frac{(570,000 - 565,000)}{565,000} = 0.88\%$$

$$2/28/00-3/31/00$$
 $R_{Mar} = ((1+0.017)\times(1+0.009))-1 = 2.62\%$

Quarter 1

$$R_{ort} = ((1+0.018) \times (1+0.029) \times (1+0.026)) - 1 = 7.48\%$$